CSILLAGOK

A csillag a csillagászat szaknyelvében olyan égitest, amely nukleáris energiát termel, így saját fénnyel rendelkezik, szemben a bolygókkal, amelyek központi csillaguk fényét verik vissza, és elenyésző saját sugárzást bocsátanak ki. A népnyelv régebben valamennyi égitest szinonímájaként használta a csillag szót,a szócikk a továbbiakban a csillagászati értelemben vett jelentéséről szól.

A csillagokat villódzó, sziporkázó fénypontokként látjuk szabad szemmel. A nagy távolság miatt tűnnek pontszerűnek, még a legnagyobb földi távcsövekben is. A csillagok fényének ezt a szabálytalan pislákolását a szcintilláció jelenségét  a földi légkör áramlásai hozzák létre. (Gyakran, első ránézésre egyáltalán nem könnyű megállapítani, hogy az égen bolygót látunk-e vagy csillagot. Az amatőrcsillagászok egy jó módszere ennek megállapítására az, hogy ha egy csillag nem szcintillál, akkor feltehetően nem is csillag, hanem bolygó.)

 

A legközelebbi csillag a Nap, a következő legközelebbi a Proxima Centauri, amely 4,2 fényévre található, tehát a fény 4,2 év alatt ér ide onnan. Ha az egyik leggyorsabb vonattal, a francia TGV-vel utazhatnánk annak 574,8 km/h nagyságú rekordsebességével, akkor majdnem 8 millió évig tartana az odaút. Ez a távolság tipikus a galaxisunkban. Ennél sűrűbben helyezkednek el a galaxis és a gömbhalmazok középpontjában, és sokkal távolabb a galaktikus halóban, a galaxist körülvevő gömb alakú térrészben.

A csillagok mérete a kicsiny, nagyváros méretű neutroncsillagoktól (melyek tulajdonképpen már halott csillagok) az olyan szuperóriásokig terjed, mint a Sarkcsillag (Polaris), valamint az Orion csillagkép Betelgeuse nevű csillaga, melyek átmérője a Napénak nagyjából ezerszerese. (A ma ismert legnagyobb csillag a VV Cephei, amelynek a kerülete 1900 szorosa a napnak. Ez kb 2 644 800 000 km-nek felel meg ) Ezek sűrűsége viszont sokkal kisebb, mint a Napé.

A csillagok állapothatározói

A csillagok fizikai tulajdonságait az ún. állapothatározókkal jellemezhetjük. A legfontosabb állapothatározók a következők: fényesség, felületi hőmérséklet, színkép, sugár, forgási periódus, kémiai összetétel, mágneses tér, tömeg. Ezen kívül szokás még a felületi gravitációs gyorsulást is az állapothatározók közé sorolni, ezek azonban a csillag tömege és sugara ismeretében könnyen kiszámíthatóak.

Fényesség

Egy fedési kettős fényességváltozása

 A csillagok látszólagos fényességének mértékegysége a magnitúdó. Minél fényesebb egy adott csillag, annál kisebb a magnitúdó értéke. A magnitúdó logaritmikus mértékegység: ha két csillag látszólagos fényessége között 1 magnitúdó különbség van, akkor az egyik csillag 2,512-szer fényesebb a másiknál.

csillagok fényessége

A Nap látszólagos fényessége -26,86 magnitúdó. A Jupiter -4 magnitúdós fényességet érhet el. A legfényesebb csillag, a Szíriusz -1,5 magnitúdós. A leghalványabb, szabad szemmel tiszta időben még látható csillagok 6 magnitúdósak. Kézi távcsővel 10 magnitúdós objektumok is láthatók lehetnek. A legnagyobb földi távcsövekkel 25 magnitúdós, a Hubble-űrtávcsővel 30 magnitúdós csillagok is észlelhetők.

A látszólagos fényesség nem utal a csillagok valódi fényességére. Bizonyos csillagok látszólagos fényessége csak azért kisebb, mert sokkal távolabb vannak a Földtől. Ezért a csillagok valódi fényességét az abszolút fényesség adja meg, amely a csillag 10 parszek távolságból megfigyelhető látszólagos fényessége.

 A rendszert akkréciós korong veszi körül.

Luminozitás

 A csillagok luminozitásán a másodpercenként kibocsátott sugárzás mennyiségét értjük. A csillagok energiáját a magban végbemenő termonukleáris reakciók hozzák létre. A luminozitás a csillag korától is függ. Az energia elektromágneses sugárzás formájában szabadul fel, a röntgen sugaraktól a rádióhullámokig. Az ultraibolya sugárzást a földi légkör felfogja, amely nehezíti a luminozitás mérését a felszínről. Ezért ezeket közvetlenül a világűrből mérik, műholdak segítségével. Egyes csillagok luminozitása a Nap luminozitásának 500-500000-szerese is lehet.

 Színképtípus

A színképet spektroszkóppal lehet meghatározni. Ez felbontja a beérkező fényt egy színképi sávra, amelyen sötét, ún. Fraunhofer-vonalak jelennek meg. Ezeket az csillag atmoszférájában található alkotóelemek hozzák létre. Például a hidrogén sötét vörös vonalként jelenik meg. Egy csillag színképének vizsgálata minőségi (kvalitatív) elemzésen kívül mennyiségi (kvantitatív) elemzést is lehetővé tesz. Vagyis a légköri elemek által létrehozott színképvonalak alakja és elhelyezkedése a gáz hőmérsékletétől és nyomásától is függ.

Minden színképosztálynak 0-9-ig terjedő alosztálya van a felületi hőmérséklet csökkenő sorrendjében, kivétel az O-típus, ahol az osztályozás O5-tel kezdődik. A mi napunk G2 típusú, legtöbb értelemben átlagos csillagnak számít.

Hőmérséklet

 A hőmérséklet a csillag magjától a légköréig változik. Például a Nap magjában eléri a 15 millió °C-ot, míg a légkör effektív felszíni hőmérséklete csak 5785°K. A csillagászok a légkör effektív hőmérsékletét a színkép és a fekete test (minden sugárzást elnyelő test, amely csak elméletileg létezik) összehasonlításával mérik.

Méret

 Meg lehet mérni az óriás és szuperóriás csillagok szögátmérőjét egy Michelson-interferométernek nevezett műszerrel. Ez az ívpercekben és ívmásodpercekben mért szögátmérő a távolsággal arányban megadja a csillag lineáris átmérőjét. Az Arcturus, az égbolt negyedik legfényesebb csillaga 23 napátmérővel rendelkezik, vagyis átmérője a Nap átmérőjének 23-szorosa (a Nap átmérője 1,39 x 106 km). Az Orion csillagképben lévő Betelgeuse átmérője 1000-szer nagyobb a Nap átmérőjénél. Más módszerek is vannak a méretek meghatározására (kisugárzott energia vagy a fedési kettősök fogyatkozásai alapján).

Néhány törpecsillag egymáshoz viszonyított mérete

Tömeg

 

A tömeg az egyik legfontosabb állapothatározó. Értéke 0,07 és 100 naptömeg között változhat. Alsó határát a stabil hidrogénfúzió elindításához szükséges maghőmérséklet jelöli ki, az ennél könnyebb égitestek a barna törpék, melyek magjában csak a deutérium fúziója indul be, ami hamar el is fogy. Felső határa az úgynevezett Eddington-határ, az ennél nehezebb csillagok olyan intenzív sugárzást bocsátanának ki, hogy a sugárnyomás lefújná a csillag külső rétegeit (így megkönnyítve).

Egy csillag gravitációs ereje főleg a tömegétől függ. A kettőscsillagok esetében a tömeget az egymástól való távolságuk és keringési idejük alapján lehet meghatározni. A pálya a tömegvonzástól függ, a tömegvonzás pedig a tömegtől és a távolságtól. A tömeg-luminozitás összefüggés alapján is meghatározhatjuk egy csillag tömegét. A tömeg és a luminozitás egyenes arányban nő.

Minél nagyobb egy csillag tömege, annál gyorsabb ütemben alakítja át az anyagot energiává. Ennek következtében a nagy tömegű csillagok élettartama rövidebb, mint a kisebb tömegűeké. A csillagok - a fősorozaton való tartózkodásuk során - a hélium és hidrogén magjukban végbemenő fúzióból nyerik az energiát. Ez a folyamat a csillag tömegétől függően rövidebb vagy hosszabb. Egy naptömegű csillag élettartama 10 milliárd év, egy három naptömegű csillagé 500 millió év, egy 30 naptömegű csillagé már csak 6 millió év.

 Kémiai összetétel

Habár a csillagok nagyrészt hidrogént és héliumot tartalmaznak, kémiai összetételül eléggé különbözik. Például nemrég határozták meg, hogy a fiatal csillagok nagyobb arányban tartalmaznak fémeket, mint az idősebbek. Ennek az a magyarázata, hogy a vörös óriások már elégették a bennük lévő hidrogént, bennük a héliumot és a nehezebb elemek fúziója zajlik.

Sajátmozgás

A csillagok szabad szemmel nézve mozdulatlannak tűnnek, valójában azonban állandó mozgásban vannak. Ezt nevezzük a csillagok sajátmozgásának. A színkép tanulmányozásával meg lehet határozni a csillagok látóirányú mozgási sebességet. A közeli csillagok tanulmányozásából a csillagászok rájöttek, hogy ezek egymáshoz viszonyítva meghatározatlan pályán mozognak kb. 24 km/s sebességgel. A Nap 26 km/s-mal közeledik a Herkules csillagkép irányába. Az egyik legszembetűnőbb sajátmozgással a Barnard-csillag (Nyílcsillag) rendelkezik.

Távolság

 

A csillagok távolságát csak közvetlen módszerekkel lehet meghatározni. A hatalmas értékek miatt nem kilométerben vagy csillagászati egységben, hanem fényévben vagy parszekben mérjük. A Naprendszerhez legközelebbi csillag a Proxima Centauri 4,22 fényév távolsággal.

Ha meghatározzuk egy Földhöz elég közel elhelyezkedő csillag pontos helyzetét hat hónapos különbséggel (két periódusban, amikor a Föld ellentétes irányban helyezkedik el a Naptól), akkor észrevehetjük, hogy a két helyzet nem egyezik. Ismerve a földi pálya átmérőjét (~ 300 millió km), ki tudjuk számítani azt a szöget, amellyel a csillag elmozdult az égbolton. Az elmozdulás fordítottan arányos a távolsággal. Ezt a módszert parallaxis módszernek nevezzük. Csak a közeli csillagoknál alkalmazható. A távolabbi csillagok elmozdulási szöge túl kicsi.

Osztályozás

kettős csillag

Abszolút fényességük, hőmérsékletük, színképük és más állapothatározók szerint a csillagok lehetnek:

-átlagos csillagok (fősorozatbeli csillagok)

-vörös törpék

 

-barna törpék (legkisebb tömegű csillagok, amelyek magjában még beindulhat a fúziós reakció)

-szubtörpék

-óriás csillagok

-vörös óriások

-maradvány csillagok

-fehér törpék

-fekete törpék

-neutroncsillagok

-pulzárok (periodikus rádiójeleket küldenek az űrbe)

-magnetárok (erős mágneses térrel rendelkező neutroncsillagok)

-kvarkcsillagok (egymáshoz préselt kvarkokból állnak)

-fekete lyukak (erős gravitációs térrel rendelkező maradvány csillagok)

Kémiai összetételük és a galaxisban elfoglalt helyzetük szerint a csillagok különböző populációkhoz tartoznak.

Kísérőik alapján a csillagok lehetnek:

kettőscsillagok

optikai kettőscsillagok (csak látszólag vannak egymás mellett, valójában egymástól több fényévre vannak)

fizikai kettőscsillagok

spektroszkópiai kettőscsillagok (színképvonalak eltolódásából lehet rájuk következtetni)

fedési kettőscsillagok (egymást periodikusan eltakaró csillagok)

többes rendszerek

bolygórendszerek

Fényességük szerint a csillagok lehetnek:

állandó fényességű csillagok

változócsillagok (periodikus vagy nem periodikus változásokkal): cefeidák, novák, szupernóvák stb.

barna törpe

Energiatermelés

A csillagok legfontosabb energiaforrása a magban zajló termonukleáris reakció. Az energia az atommagok fúziójából szabadul fel, több millió kelvin fokon. Ilyen magas hőmérsékleten az elektronok leválnak az atomokról, és plazma jön létre. Az atommagok ütközése termonukleáris reakciókat eredményez. A fúzió többféleképpen is végbemehet, összességében három fő folyamatot különböztetünk meg. Az egyik a proton-proton ciklus, ami során protonokból héliummagok keletkeznek. A Naphoz hasonló (viszonylag) kis tömegű fősorozatbeli csillagok energiatermelésében ez a folyamat dominál. Nagy tömegű forró csillagok energiatermelésében a CNO-ciklus (más néven Bethe-Weizsacker-folyamat) játszik fontos szerepet. Ennél is magasabb hőmérsékleten megy végbe a három alfa-ciklus (Salpeter-reakció).

Csillagfejlődés

Csillagfejlődés alatt értjük azon változások sorozatát, amely egy csillagban, élete során (több százezer, több millió vagy pár milliárd év alatt) lejátszódik. Ez idő alatt fényt és hőt bocsát ki, de a háttérben radikális változások is történnek.

Plútó körüli csillagok

 A csillagok születése

A csillagok születése több millió éves folyamat, és több szakaszból áll: egy molekuláris felhő belsejében csomósodások vagy globulák jönnek létre, ezekből előbb protocsillagok, majd csillagok lesznek.

A világűrben hatalmas por- és gázfelhők vannak. A molekuláris felhőkben az anyag sűrűbb és koncentráltabb. Ezek több tíz fényév átmérőjűek lehetnek, a bennük lévő anyag még nagyon hideg. Azért nevezzük molekuláris felhőknek, mert a benne található gázok molekulák formájában vannak jelen. Minden ilyen molekuláris felhő gyenge egyensúlyban van. Külső hatás következtében ez az egyensúly felborul. Ekkor a felhő egy része saját tömegétől összeroskad és az anyag elkezd összehúzódni. A felhő kisebb anyagcsomókra oszlik.

A molekuláris felhőkből kiváló anyagcsomókból globulák jön létre. Ezeknek mérete a Naprendszerével egyenlő, tömegük 200 naptömeg. Még nagyon hideg és sötét objektumok. Lassan egyre sűrűbbek és forróbbak lesznek, majd létrejönnek belőlük a protocsillagok. Ezek már sugározni kezdenek. A protocsillagok anyaga tovább sűrűsödik, fényük változó. Gyors gázkilövellések indulnak a pólusok felé. Amikor a magban a hőmérséklet eléri a 10 millió fokot beindulnak a nukleáris reakciók. A protocsillag átalakulásának ideje a tömegétől függ (30 millió év egy Naphoz hasonló csillagnál és 300 ezer év egy 30 naptömegű csillagnál).

 A csillagok halála

Amikor a csillag elhasználta a belsejében lévő hidrogént, elkezd összehúzódni és egyre forróbb lesz. A hidrogén még nagy mennyiségben fordul elő a felszín közelében és itt is beindul a fúzió. Ezután a csillag kitágul és színe vörössé válik, vörös óriás lesz. Átmérője 10-100 napátmérő is lehet. A magban újabb nukleáris reakciók indulnak be: a hélium fúziójából szén keletkezik. A csillag atmoszférája kidobódik az űrbe, táguló gázgömböt, planetáris ködöt hozva létre. Amikor a hélium elfogy, a csillag újra összehúzódik.

Ha a csillag tömege nem elég nagy, belsejében már nem lesz akkora hőmérséklet, hogy újabb reakciók induljanak be és fehér törpévé válik. A fehér törpe egy nagyjából földméretű, naptömegű csillag. Stabilitását már nem a magfúzió, hanem a belsejében kialakult elfajult elektrongáz nyomása biztosítja, egyensúlyt teremtve a gravitáció összehúzó erejével. A fehér törpék hőmérséklete és fényessége évmilliárdok alatt fokozatosan csökken és csak egy fekete törpe marad hátra.

Nagy tömegű csillagoknál a hélium elhasználása után a fúzió egyre nagyobb atomtömegű elemekkel folytatódik, egészen a vasig. A fúzió azért áll le a vasnál, mert az ennél nagyobb rendszámú elemek keletkezése már nem energianyereséges. Szuperóriás csillagok jönnek létre, melyeknek átmérője 1000 napátmérő is lehet. Belsejük különböző kémiai összetételű rétegekből áll, amelyek a felszínhez közeledve egyre hidegebbek és ritkábbak. Hirtelen felrobbannak és az anyaguk szétszóródik az űrben. Ezeket nevezzük szupernóváknak. A szupernovák fényessége rövid ideig a Napnál 10 milliárdszor nagyobb. A robbanás után visszamaradó mag, a tömegétől függően neutroncsillag vagy fekete lyuk lesz.

Pulzár a Rák-ködben (Chandra-űrtávcső)

Rekorder csillagok

Legnagyobb méretű: VV Cephei (Gránátcsillag) 1900-szorosa a napnak

Legnagyobb tömegűek:Carinae és a Pisztoly-köd központi csillaga 100-150 naptömegűek, utóbbi 1-3 millió éves, akkor tömege a Napénak 200-szorosa volt, 1-3 millió év múlva szupernóva lesz.

Tenger csillagok

Oldalmenü
Diavetítő
Naptár